ADVANCES IN UNDERSTANDING OF THE PATHOPHYSIOLOGY OF HEREDITARY ANGIOEDEMA (HAE)
Hereditary Angioedema (HAE) – Background

- Patients suffer episodic swelling, without urticaria
 - face, oropharynx, GI system, genitalia, extremities
- Autosomal dom. ~ 1:50,000, no strong race bias
- Type I: *Serpina1* gene mutations cause loss of expression of C1 esterase inhibitor (C1-INH)
- Type II: *Serpina1* mutations lead to non-functional C1-INH
- Type III: HAE with normal C1-INH – over-active FXII?
- In all types, the potent vasodilator bradykinin (BK), is produced in excess, causing vascular leakage and edema
The contact system is pivotal in HAE pathophysiology

- Insufficient C1-INH or enhanced enzymatic activity leads to pathological bradykinin generation
HAE therapies

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute therapies</td>
<td></td>
</tr>
<tr>
<td>C1-INH IV (Plasma & recomb.)</td>
<td>C1-INH replacement</td>
</tr>
<tr>
<td>Ecallantide (small protein)</td>
<td>Kallikrein antagonist</td>
</tr>
<tr>
<td>Icatabant (small molecule)</td>
<td>BK2R antagonist</td>
</tr>
<tr>
<td>Prophylactic therapies</td>
<td></td>
</tr>
<tr>
<td>C1-INH IV</td>
<td>C1-INH replacement</td>
</tr>
<tr>
<td>Attenuated androgens e.g. Danazol</td>
<td>Enhances C1-INH secretion</td>
</tr>
<tr>
<td>Lysine analogues e.g. Tranexamic acid</td>
<td>Anti-fibrinolytic, inhibits plasmin</td>
</tr>
<tr>
<td>Therapies in development</td>
<td></td>
</tr>
<tr>
<td>C1-INH SC (plasma, ↑conc.)</td>
<td>C1-INH replacement</td>
</tr>
<tr>
<td>Monoclonal antibody – anti-kallikrein</td>
<td>Blocks enzymatic kallikrein activity</td>
</tr>
<tr>
<td>Small molecule</td>
<td>Kallikrein antagonist (oral)</td>
</tr>
<tr>
<td>Anti-sense nucleic acid</td>
<td>Prekallikrein knockdown</td>
</tr>
<tr>
<td>Monoclonal antibody – anti-FXIIa</td>
<td>Blocks enzymatic FXIIa activity</td>
</tr>
</tbody>
</table>
Disease Variability in HAE

- While C1-INH levels are pivotal, other factors contribute to disease variation
 - C1-INH (>300 variants) - differences b/w complement & kallikrein regulation activity
 - BK catabolism - multiple enzymes e.g. ACE, APP, NEP
 - Contributions of fibrinolytic system
 - High variability in FXII concentration levels (60-140%)
 - Variability in endothelial susceptibility to leakage

HAE disease state

- Frequency of attack
- Symptom severity
- Locale of swelling
- Symptom duration
- Therapy response
Triggers for HAE attacks

• Relationship b/w biochemical and HAE triggers poorly understood
 – HAE triggers: physical trauma, surgery, dental extraction, stress, infection, menstruation, underlying pathologies

• Multiple triggers of contact system activation proposed
 – FXII activation through contact at various physiological surfaces
 • eg. collagen, DNA, misfolded proteins, polyphosphates
 – Plasmin activation of FXII
 – Prolyl-carboxypeptidase (PRCP) activation of prekallikreina
 – HSP90 activation of prekallikreinb

• In health, C1-INH prevents any trigger from leading to edema

a Shariat-Madar Z, Mahdi F, Schmaier AH 2002 J Biol Chem 277;
b Joseph, Tholanikunnel, Kaplan, 2002 PNAS 99
Plasminogen activation in HAE attacks

• Such activation may influence propagation of & precede HAE attacks
 – Tranexamic acid has prophylactic benefit in some patients
 – D-dimers elevated in patient attack samples, and often remission samples
 – tPA can be released from activated endothelial cells

• Activation models proposed, either kallikrein- or FXII-mediated\(^a\)
• Both require FXII-driven amplification for pathological BK formation
• Plasminogen or FXII activation drives the FXII model
• PRCP, HSP90 or trace plasma kallikrein drives the kallikrein model

\(^a\) de Maat, de Groot and Maas, 2014, Semin Thromb Hemost
HAE with normal C1-INH (HAE-nC1-INH; Type III)

- Patients suffer HAE attacks clinical similarities to type I and II
 - First described in 2000 by Bork et al\(^a\)
- Prevalence – several hundred families, but maybe many more
- Mostly females, estrogen linkage - FXII gene estrogen response element
- Significant proportion of these patients have FXII mutation at aa309
 - mutation introduces new plasmin cleavage sites\(^b\)
 - mutation leads to defective FXII glycosylation\(^c\) – ↑FXII activity
- PAI-2 deficiency\(^d\) in type III patients with and without FXII mutations
 - likely due to excess consumption
- FXII hyper-activity appears to overcome normal C1-INH regulation
 - fibrinolytic contribution; basis in patients without FXII mutation unclear

Role for BK1R? – local or systemic activation

- BK engagement with constitutive BK2R believed to drive localised edema episodes
- BK1R up-regulated in inflammation – role for systemic activation?
- Supporting observations:
 - Episodes often involve swelling at multiple locales
 - Drops in blood pressure not observed
 - Modest level systemic C1-INH therapy alleviates symptoms
 - Prodromal symptoms suggest systemic activation
- Model proposed by Zonne et al\(^a\) where:
 - Initial BK activation leads to BKR2 desensitisation
 - BK-mediated inflammation leads to BK1R up-regulation
 - Angioedema occurs at sites of endothelial BK1R expression

FXII is pivotal in HAE: C1-INH is its main regulator

- FXII inhibition as a therapeutic strategy:
 - many contact system triggers but FXII key for pathological amplification
 - Hageman’s patients have no enhanced thrombosis risk
 - FXII >90% regulated by C1-INH; kallikrein regulated ~ 50/50 C1-INH α2-M
 - Treatment with a FXII inhibitor could restore regulation of deficient C1-INH

FXIIa-med. Kall activity in 80% normal v HAE plasma with CSL312 inhibition

FXII antibody "normalises" kallikrein-kinin pathway of HAE plasma ex vivo

FXII inhibition prevents BK generation (LC-MS/MS assay)
Anti-FXIIa mAb, inhibits ACEi-induced angioedema

C1-INH -/- mice → i.p. mAb → i.v ACEi (Captopril) 2.5 mg/kg → i.v. Evan's blue → Dye extraction

Colon

ACEI

Basal

3F7/ACEI

BM4/ACEI

FXII antagonist mAb: 3F7 – CSL312 parent mAb

Graphs showing OD @ 620 nm for different treatments.
Pathways relevant to HAE pathophysiology

- The contact system, with FXII at its apex is pivotal in HAE
 - Dysregulation of this system due to insufficient C1-INH or enhanced enzymatic activity leads to pathological bradykinin generation

![Pathway diagram](image-url)
SUMMARY

• HAE attacks are mediated by bradykinin
• Multiple pathways intersect the contact system
 – affecting disease variability and therapeutic response
• Mechanism underlying HAE triggers poorly understood
• Important pathophysiological role of fibrinolytic system
• HAE Type III may result from hyperactivity of FXII,
 – Disturbing the balance of contact activation and regulation
• FXIIa amplifies pathological bradykinin production – novel HAE target
Acknowledgements

Molecular Biology
Con Panousis
Veronika Rayzman
Matt Hardy
Chen Chao-Guang
Michael Wilson
Andrew Nash

Cell Biology and Physiology
Helen Cao
Mark Biondo
Anne McDonald
June Dai
Sam Busfield

Analytical Biochemistry
Hal Braley
Hadi Lioe

Research and Clinical Bioanalytics
Tim Green
Andreas Gille

Pharmacology and Toxicology
Mark Nolte
Ingo Pragst
Stefan Schmidbauer
Frauke May
Claudia Nerlich
Sabrina Schenk
Elmar Raquet
Patrick Letmade
Gerhard Dickneite
Stefan Schulte

Project management
Gino Vairo & Lubomira Jamriska

Collaborating clinicians
Prof Connie Katelaris, UWS & Campbellfield hospital
Dr William Smith, RAH
Prof Len Harrison, RMH, WEHI
Prof Allen Kaplan, MUSC
Prof Konrad Bork, UMC, Mainz
Prof Henriette Farkas, Semmelweis Uni, Budapest